431 research outputs found

    Optimization of blasting parameters in open cast quarries of El Hassa-Bouira (Northern Algeria)

    Get PDF
    In recent years, Algeria has known a rapid growth in the construction projects, such as: buildings, roads, and infrastructure, which increased the demand for aggregates production in quarries. However, vibrations and noises generated by blasting operations have a negative impact on the residents living nearby. For this reason, blast tests were performed in the open cast quarries of the company Sarl El Hassa-Bouira (Northern Algeria) using instantaneous electric detonators (IED), micro delays (MDD) and delays (EDD) to minimize the instantaneous load. We also minimized noise and vibration during the blasting. A seismograph allowed us to take further measurements

    Exact Outage Probability of Dual-Hop CSI-Assisted AF Relaying over Nakagami-m Fading Channels

    Get PDF
    published_or_final_versio

    Non-orthogonal Opportunistic Beamforming: Performance Analysis and Implementation

    Get PDF
    published_or_final_versio

    POM@PMO plastic electrode for phosphate electrochemical detection: a further improvement of the detection limit

    Get PDF
    The development of a highly sensitive electrochemical sensor (E-sensor) is described based on stand-alone plastic electrodes (PE) for phosphate detection, being an essential nutrient in the marine environment. The detection mechanism is based on the chemical affinity between polyoxomolybdate anions (POM) and orthophosphate to form an electroactive phosphomolybdate complex. The custom-made E-sensor was formulated with an organic octamolybdate derivative (TBA4Mo8O26) incorporated with periodic mesoporous organosilica (PMO) to obtain a significant improvement in the analytical performances of phosphate determination. This POM@PMO combination was found to be advantageous in the determination of low concentrations of phosphate in standard solutions ranging from 1 to 500 nM, using square wave voltammetry as the detection technique. This sensitivity enhancement can be attributed to the effect of hydrophobic PMO in loading more POM moieties, owing to its highly porous structure and charged shell. Consequently, the POM@PMO-PE sensor achieved a competitive sensitivity of 4.43 ± 0.14 μA.nM−1.cm−2 and a limit of detection of 0.16 nM with good selectivity against silicates. Finally, seawater and treated wastewater samples have been tested to validate the sensor response in comparison to the official method of phosphate determination. Graphical abstract: [Figure not available: see fulltext.

    Weighted Tradeoff between Spectral Efficiency and Energy Efficiency in Energy Harvesting Systems

    Get PDF
    This paper proposes a new power allocation scheme to jointly optimize energy efficiency (EE) and spectral efficiency (SE) of a point-to-point communication system in which the transmitter is equipped with fixed as well as energy harvesting batteries. Time switching protocol is used such that in each time frame the node either harvests energy or transmits information. Firstly, a multi-objective optimization problem which jointly optimizes EE and SE is formulated. An importance weight parameter is introduced to control the priority level between EE and SE. Secondly, the multi-objective problem is transformed into a single-objective optimization problem by using importance weight, and then solved through fractional programming. Using the Karush-Kuhn-Tucker conditions, the optimum power allocation scheme without input power constraint is developed. The ensuing solution is then generalized for system operation with average input power constraint. Closed-form expressions are derived and tested through simulations. Numerical results results are provided, and show the impact of the harvested power in improving the overall rate of the system. Also investigation is done to analyze the effect of system parameters on the achievable trade-off performance of the energy-harvesting based syste

    Entanglement distance for arbitrary M -qudit hybrid systems

    Get PDF
    This is the final version. Available from the American Physical Society via the DOI in this recordThe achievement of quantum supremacy boosted the need for a robust medium of quantum information. In this task, higher-dimensional qudits show remarkable noise tolerance and enhanced security for quantum key distribution applications. However, to exploit the advantages of such states, we need a thorough characterisation of their entanglement. Here, we propose a measure of entanglement which can be computed either for pure and mixed states of a MM-qudit hybrid system. The entanglement measure is based on a distance deriving from an adapted application of the Fubini-Study metric. This measure is invariant under local unitary transformations and has an explicit computable expression that we derive. In the specific case of MM-qubit systems, the measure assumes the physical interpretation of an obstacle to the minimum distance between infinitesimally close states. Finally, we quantify the robustness of entanglement of a state through the eigenvalues analysis of the metric tensor associated with it.QuantERA ERA-NET Co-fundEngineering and Physical Sciences Research Council (EPSRC

    Structural Analysis of Nano Core PCF With Fused Cladding for Supercontinuum Generation in 6G Networks

    Get PDF
    The Sixth Generation (6G) networks have identified the use of frequency range between 95 GHz and 3 THz with a targeted data rate of 1 Terabytes/second at the access network for holographic video applications. As is demands broadening of spectrum at the core network, this paper proposes a Supercontinuum Generation (SCG) through photonic crystal fiber (PCF) as it provides excellent broadening of the optical spectrum. Discussed in the paper is supercontinuum generation at high pumping power as per the standards specified by the International Telecommunications Union. The proposed PCF is designed with silicon nanocrystal core and the cladding microstructures is arranged in a fusion approach to effectively optimize the optical parameters such as dispersion, nonlinearity, birefringence, group-velocity dispersion, and confinement loss. The fused cladding comprises of a flower-cladding assembly in which air-holes arrangement is inspired from petals in a pleated structure. Such arrangement is shown here to provide high nonlinearity and negative dispersion for high power supercontinuum generation. The novel nanocore assembly with improved structural constraints delivers a non-linearity of 6.37 × 106 W−1 km−1 and a negative dispersion of −142.1 (ps/nm-km) at 1,550 nm. Moreover, a supercontinuum spectrum is generated using different pulse widths ranging from 350 to 650 ps with 25 kW pump power for PCF lengths of 10 and 15 mm

    Impact of increasing levels of adaptive statistical iterative reconstruction on image quality in oil-based postmortem CT angiography in coronary arteries.

    Get PDF
    Postmortem multi-detector computed tomography (PMCT) has become an important part in forensic imaging. Modern reconstruction techniques such as iterative reconstruction (IR) are frequently used in postmortem CT angiography (PMCTA). The image quality of PMCTA depends on the strength of IR. For this purpose, we aimed to investigate the impact of different advanced IR levels on the objective and subjective PMCTA image quality. We retrospectively analyzed the coronary arteries of 27 human cadavers undergoing whole-body postmortem CT angiography between July 2017 and March 2018 in a single center. Iterative reconstructions of the coronary arteries were processed in five different level settings (0%; 30%; 50%; 70%; 100%) by using an adaptive statistical IR method. We evaluated the objective (contrast-to-noise ratio (CNR)) and subjective image quality in several anatomical locations. Our results demonstrate that the increasing levels of an IR technique have relevant impact on the image quality in PMCTA scans in forensic postmortem examinations. Higher levels of IR have led to a significant reduction of image noise and therefore to a significant improvement of objective image quality (+ 70%). However, subjective image quality is inferior at higher levels of IR due to plasticized image appearance. Objective image quality in PMCTA progressively improves with increasing level of IR with the best CNR at the highest IR level. However, subjective image quality is best at low to medium levels of IR. To obtain a "classic" image appearance with optimal image quality, PMCTAs should be reconstructed at medium levels of IR

    Volatile Constituents And Antimicrobial Activity Of Lavandula Stoechas L. Oil From Tunisia

    Full text link
    International audienceAn oil obtained from the dried leaves of Lavandula stoechas L. in 0.77% yield was analyzed by capillary GC and GUMS. Fenchone (68.2%) and camphor (11.2%) were the main components of the 28 identified molecules. This oil has been tested for antimicrobial activity against six bacteria, and two fungi. The results showed that this oil was active against all of the tested strains; Staphylococcus aureus was the more sensitive strain

    High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications

    Get PDF
    This paper presents the results of a study on developing an effective technique to increase the performance characteristics of antenna arrays for sub-THz integrated circuit applications. This is essential to compensate the limited power available from sub-THz sources. Although conventional array structures can provide a solution to enhance the radiation-gain performance however in the case of small-sized array structures the radiation properties can be adversely affected by mutual coupling that exists between the radiating elements. It is demonstrated here the effectiveness of using SIW technology to suppress surface wave propagations and near field mutual coupling effects. Prototype of 2x3 antenna arrays were designed and constructed on a polyimide dielectric substrate with thickness of 125 mu m for operation across 0.19-0.20 THz. The dimensions of the array were 20x13.5x0.125 mm(3). Metallization of the antenna was coated with 500 nm layer of Graphene. With the proposed technique the isolation between the radiating elements was improved on average by 22.5 dB compared to a reference array antenna with no SIW isolation. The performance of the array was enhanced by transforming the patch to exhibit metamaterial characteristics. This was achieved by embedding the patch antennas in the array with sub-wavelength slots. Compared to the reference array the metamaterial inspired structure exhibits improvement in isolation, radiation gain and efficiency on average by 28 dB, 6.3 dBi, and 34%, respectively. These results show the viability of proposed approach in developing antenna arrays for application in sub-THz integrated circuits
    corecore